Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 133(15): 3039-49, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16818445

RESUMO

Joints, which separate skeleton elements, serve as important signaling centers that regulate the growth of adjacent cartilage elements by controlling proliferation and maturation of chondrocytes. Accurate chondrocyte maturation is crucial for endochondral ossification and for the ultimate size of skeletal elements, as premature or delayed maturation results predominantly in shortened elements. Wnt9a has previously been implicated as being a player in joint induction, based on gain-of function experiments in chicken and mouse. We show that loss of Wnt9a does not affect joint induction, but results to synovial chondroid metaplasia in some joints. This phenotype can be enhanced by removal of an additional Wnt gene, Wnt4, suggesting that Wnts are playing a crucial role in directing bi-potential chondro-synovioprogenitors to become synovial connective tissue, by actively suppressing their chondrogenic potential. Furthermore, we show that Wnt9a is a temporal and spatial regulator of Indian hedgehog (Ihh), a central player of skeletogenesis. Loss of Wnt9a activity results in transient downregulation of Ihh and reduced Ihh-signaling activity at E12.5-E13.5. The canonical Wnt/beta-catenin pathway probably mediates regulation of Ihh expression in prehypertrophic chondrocytes by Wnt9a, because embryos double-heterozygous for Wnt9a and beta-catenin show reduced Ihh expression, and in vivo chromatin immunoprecipitation demonstrates a direct interaction between the beta-catenin/Lef1 complex and the Ihh promoter.


Assuntos
Condrócitos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Articulações/embriologia , Articulações/fisiologia , Proteínas Wnt/fisiologia , Animais , Sequência de Bases , Cromatina/genética , Primers do DNA , Desenvolvimento Embrionário , Membro Anterior/embriologia , Proteínas Hedgehog , Imuno-Histoquímica , Articulações/patologia , Camundongos , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , beta Catenina/genética
2.
Development ; 133(7): 1219-29, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16495310

RESUMO

Recently canonical Wnt signaling in the ectoderm has been shown to be required for maintenance of the apical ectodermal ridge (AER) and for dorsoventral signaling. Using conditional gain- and loss-of-function beta-catenin alleles, we have studied the role of mesenchymal beta-catenin activity during limb development. Here, we show that loss of beta-catenin results in limb truncations due to a defect in AER maintenance. Stabilization of beta-catenin also results in truncated limbs, caused by a premature regression of the AER. Concomitantly, in these limbs, the expression of Bmp2, Bmp4 and Bmp7, and of the Bmp target genes Msx1, Msx2 and gremlin, is expanded in the mesenchyme. Furthermore, we found that the expression of Lmx1b, a gene exclusively expressed in the dorsal limb mesenchyme and involved in dorsoventral patterning, is reduced upon loss of beta-catenin activity and is expanded ventrally in gain-of-function limbs. However, the known ectodermal regulators Wnt7a and engrailed 1 are expressed normally. This suggests that Lmx1b is also regulated, in part, by a beta-catenin-mediated Wnt signal, independent of the non-canoncial Wnt7a signaling pathway. In addition, loss of beta-catenin results in a severe agenesis of the scapula. Concurrently, the expression of two genes, Pax1 and Emx2, which have been implicated in scapula development, is lost in beta-catenin loss-of-function limbs; however, only Emx2 is upregulated in gain-of-function limbs. Mesenchymal beta-catenin activity is therefore required for AER maintenance, and for normal expression of Lmx1b and Emx2.


Assuntos
Padronização Corporal , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , beta Catenina/fisiologia , Alelos , Animais , Biomarcadores/análise , Proteínas Morfogenéticas Ósseas/metabolismo , Citocinas , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas com Homeodomínio LIM , Botões de Extremidades/embriologia , Botões de Extremidades/ultraestrutura , Deformidades Congênitas dos Membros/genética , Fator de Transcrição MSX1/metabolismo , Mesoderma/fisiologia , Camundongos , Camundongos Mutantes , Escápula/embriologia , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteínas Wnt/metabolismo
3.
Dev Cell ; 8(5): 727-38, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15866163

RESUMO

Osteoblasts and chondrocytes are involved in building up the vertebrate skeleton and are thought to differentiate from a common mesenchymal precursor, the osteo-chondroprogenitor. Although numerous transcription factors involved in chondrocyte and osteoblast differentiation have been identified, little is known about the signals controlling lineage decisions of the two cell types. Here, we show by conditionally deleting beta-catenin in limb and head mesenchyme that beta-catenin is required for osteoblast lineage differentiation. Osteoblast precursors lacking beta-catenin are blocked in differentiation and develop into chondrocytes instead. In vitro experiments demonstrate that this is a cell-autonomous function of beta-catenin in an osteoblast precursor. Furthermore, detailed in vivo and in vitro loss- and gain-of-function analyses reveal that beta-catenin activity is necessary and sufficient to repress the differentiation of mesenchymal cells into Runx2- and Sox9-positive skeletal precursors. Thus, canonical Wnt/beta-catenin signaling is essential for skeletal lineage differentiation, preventing transdifferentiation of osteoblastic cells into chondrocytes.


Assuntos
Condrócitos/citologia , Condrócitos/fisiologia , Proteínas do Citoesqueleto/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Transativadores/fisiologia , Animais , Diferenciação Celular , Condrogênese , Subunidade alfa 1 de Fator de Ligação ao Core , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Camundongos Knockout , Camundongos Mutantes , Mutação , Osteogênese , Fatores de Transcrição SOX9 , Transdução de Sinais , Transativadores/deficiência , Transativadores/genética , Fator de Transcrição AP-2 , Fatores de Transcrição/genética , Proteínas Wnt , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...